Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs
نویسندگان
چکیده
We consider a natural restriction of the List Colouring problem: k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We also give a complete classification of the complexity of this problem and a number of related colouring problems for graphs with bounded maximum degree.
منابع مشابه
Structural Properties and Constant Factor-Approximation of Strong Distance-r Dominating Sets in Sparse Directed Graphs
Bounded expansion and nowhere dense graph classes, introduced by Nešetřil and Ossona de Mendez [26, 27], form a large variety of classes of uniformly sparse graphs which includes the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs. Since their initial definition it was shown that these graph classes can be defined in many equivalent ways: by gen...
متن کاملOn List Colouring and List Homomorphism of Permutation and Interval Graphs
List colouring is an NP-complete decision problem even if the total number of colours is three. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving list colouring of permutation graphs with a bounded total number of colours. More generally we give a polynomial-time algorithm that solves the listhomomorphism problem to any fixed target graph for a large cl...
متن کاملComplexity and approximation ratio of semitotal domination in graphs
A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...
متن کاملThe Parameterized Complexity of Oriented Colouring
The oriented colouring problem is intuitive and related to undirected colouring, yet remains NP-hard even on digraph classes with bounded traditional directed width measures. Recently we have also proved that it remains NP-hard in otherwise severely restricted digraph classes. However, unlike most other problems on directed graphs, the oriented colouring problem is not directly transferable to ...
متن کاملOn the generalised colouring numbers of graphs that exclude a fixed minor
The generalised colouring numbers colr(G) and wcolr(G) were introduced by Kierstead and Yang as a generalisation of the usual colouring number, and have since then found important theoretical and algorithmic applications. In this paper, we dramatically improve upon the known upper bounds for generalised colouring numbers for graphs excluding a fixed minor, from the exponential bounds of Grohe e...
متن کامل